Prepared by: Dr. Pankaj Agarwal

Introduction to FUZZY LOGIC

The concept of Fuzzy Logic (FL) was conceived by Lotfi Zadeh, a professor at the University of California at Berkley, and presented not as a control methodology, but as a way of processing data by allowing partial set membership rather than crisp set membership or non-membership. This approach to set theory was not applied to control systems until the 70's due to insufficient small-computer capability prior to that time. Professor Zadeh reasoned that people do not require precise, numerical information input, and yet they are capable of highly adaptive control. If feedback controllers could be programmed to accept noisy, imprecise input, they would be much more effective and perhaps easier to implement. Unfortunately, U.S. manufacturers have not been so quick to embrace this technology while the Europeans and Japanese have been aggressively building real products around it.
WHAT IS FUZZY LOGIC?

In this context, FL is a problem-solving control system methodology that lends itself to implementation in systems ranging from simple, small, embedded micro-controllers to large, networked, multi-channel PC or workstation-based data acquisition and control systems. It can be implemented in hardware, software, or a combination of both. FL provides a simple way to arrive at a definite conclusion based upon vague, ambiguous, imprecise, noisy, or missing input information. FL's approach to control problems mimics how a person would make decisions, only much faster.
Our perception of the real world is pervaded by concepts which do not have sharply defined boundaries – for example, many, tall, much larger than, young, etc. are true only to some degree and they are false to some degree as well. These concepts (facts) can be called fuzzy or gray (vague) concepts – a human brain works with them, while computers may not do it (they reason with strings of 0s and 1s). Natural languages, which are much higher in level than programming languages, are fuzzy whereas programming languages are not. The door to the development of fuzzy computers was opened in 1985 by the design of the first logic chip by Masaki Togai and Hiroyuki Watanabeat Bell Telephone Laboratories. In the years to come fuzzy computers will employ both fuzzy hardware and fuzzy software, and they will be much closer in structure to the human brain than the present-day computers are.
It is a mathematical tool for dealing with uncertainty. It offers to a soft computing partnership the important concept of computing with words’. It provides a technique to deal with imprecision and information granularity. The fuzzy theory provides a mechanism for representing linguistic constructs such as “many,” “low,” “medium,” “often,” “few.” In general, the fuzzy logic provides an inference structure that enables appropriate human reasoning capabilities. On the contrary, the traditional binary set theory describes crisp events, events that either do or do not occur. It uses probability theory to explain if an event will occur, measuring the chance with which a given event is expected to occur. The theory of fuzzy logic is based upon the notion of relative graded membership and so are the functions of mentation and cognitive processes. The utility of fuzzy sets lies in their ability to model uncertain or ambiguous data
Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory to deal with reasoning that is approximate rather than precise. In contrast with "crisp logic", where binary sets have binary logic, the fuzzy logic variables may have a membership value of not only 0 or 1 – that is, the degree of truth of a statement can range between 0 and 1 and is not constrained to the two truth values of classic propositional logic. Furthermore, when linguistic variables are used, these degrees may be managed by specific functions.

CRISP OR FUZZY LOGIC?

Logic deals with true and false. A proposition can be true on one occasion and false on another. “Apple is a red fruit” is such a proposition. If you are holding a Granny Smith apple that is green, the proposition that apple is a red fruit is false. On the other hand, if your apple is of a red delicious variety, it is a red fruit and the proposition in reference is true. If a proposition is true, it has a truth value of 1; if it is false, its truth value is 0. These are the only possible truth values. Propositions can be combined to generate other propositions, by means of logical operations.

When you say it will rain today or that you will have an outdoor picnic today, you are making statements with certainty. Of course your statements in this case can be either true or false. The truth values of your statements can be only 1, or 0. Your statements then can be said to be crisp.

On the other hand, there are statements you cannot make with such certainty. You may be saying that you think it will rain today. If pressed further, you may be able to say with a degree of certainty in your statement that it will rain today. Your level of certainty, however, is about 0.8, rather than 1. This type of situation is what fuzzy logic was developed to model. Fuzzy logic deals with propositions that can be true to a certain degree—somewhere from 0 to 1. Therefore, a proposition’s truth value indicates the degree of certainty about which the proposition is true. The degree of certainty sounds like a probability (perhaps subjective probability), but it is not quite the same. Probabilities for mutually exclusive events cannot add up to more than 1, but their fuzzy values may. Suppose that the probability of a cup of coffee being hot is 0.8 and the probability of the cup of coffee being cold is 0.2. These probabilities must add up to 1.0. Fuzzy values do not need to add up to 1.0. The truth value of a proposition that a cup of coffee is hot is 0.8. The truth value of a proposition that the cup of coffee is cold can be 0.5. There is no restriction on what these truth values must add up to.

Fuzzy Logic provide means to model the uncertainty associated with vagueness, imprecision, and lack of information regarding a problem or a plant, etc. Consider the meaning of a “short person.” For an individual X, the short person may be one whose height is below 4’25’’. For other individual Y, the short person may be one whose height is below or equal to 3’90’’. This “short” is called as a linguistic descriptor. The term “short” informs the same meaning to the individuals X and Y, but it is found that they both do not provide a unique definition. The term “short” would be conveyed effectively, only when a computer compares the given height value with the preassigned value of “short.” This variable “short” is called as linguistic variable, which represents the imprecision existing in the system.

The uncertainty is found to arise from ignorance, from chance and randomness, due to lack of knowledge, from vagueness (unclear), like the fuzziness existing in our natural language.
HOW IS FL DIFFERENT FROM CONVENTIONAL CONTROL METHODS?

FL incorporates a simple, rule-based IF X AND Y THEN Z approach to a solving control problem rather than attempting to model a system mathematically. The FL model is empirically-based, relying on an operator's experience rather than their technical understanding of the system. For example, rather than dealing with temperature control in terms such as "SP =500F", "T <1000F", or "210C <TEMP <220C", terms like "IF (process is too cool) AND (process is getting colder) THEN (add heat to the process)" or "IF (process is too hot) AND (process is heating rapidly) THEN (cool the process quickly)" are used. These terms are imprecise and yet very descriptive of what must actually happen. Consider what you do in the shower if the temperature is too cold: you will make the water comfortable very quickly with little trouble. FL is capable of mimicking this type of behavior but at very high rate.

HOW DOES FL WORK?

FL requires some numerical parameters in order to operate such as what is considered significant error and significant rate-of-change-of-error, but exact values of these numbers are usually not critical unless very responsive performance is required in which case empirical tuning would determine them. For example, a simple temperature control system could use a single temperature feedback sensor whose data is subtracted from the command signal to compute "error" and then time-differentiated to yield the error slope or rate-of-change-of-error, hereafter called "error-dot". Error might have units of degs F and a small error considered to be 2F while a large error is 5F. The "error-dot" might then have units of degs/min with a small error-dot being 5F/min and a large one being 15F/min. These values don't have to be symmetrical and can be "tweaked" once the system is operating in order to optimize performance. Generally, FL is so forgiving that the system will probably work the first time without any tweaking.

WHY USE FL?

FL offers several unique features that make it a particularly good choice for many control problems.

1) It is inherently robust since it does not require precise, noise-free inputs and can be programmed to fail safely if a feedback sensor quits or is destroyed. The output control is a smooth control function despite a wide range of input variations.

2) Since the FL controller processes user-defined rules governing the target control system, it can be modified and tweaked easily to improve or drastically alter system performance. New sensors can easily be incorporated into the system simply by generating appropriate governing rules.

3) FL is not limited to a few feedback inputs and one or two control outputs, nor is it necessary to measure or compute rate-of-change parameters in order for it to be implemented. Any sensor data that provides some indication of a system's actions and reactions is sufficient. This allows the sensors to be inexpensive and imprecise thus keeping the overall system cost and complexity low.

4) Because of the rule-based operation, any reasonable number of inputs can be processed (1-8 or more) and numerous outputs (1-4 or more) generated, although defining the rule-base quickly becomes complex if too many inputs and outputs are chosen for a single implementation since rules defining their interrelations must also be defined. It would be better to break the control system into smaller chunks and use several smaller FL controllers distributed on the system, each with more limited responsibilities.

5) FL can control nonlinear systems that would be difficult or impossible to model mathematically. This opens doors for control systems that would normally be deemed unfeasible for automation.

HOW IS FL USED?

1) Define the control objectives and criteria: What am I trying to control? What do I have to do to control the system? What kind of response do I need? What are the possible (probable) system failure modes?

2) Determine the input and output relationships and choose a minimum number of variables for input to the FL engine (typically error and rate-of-change-of-error).

3) Using the rule-based structure of FL, break the control problem down into a series of IF X AND Y THEN Z rules that define the desired system output response for given system input conditions. The number and complexity of rules depends on the number of input parameters that are to be processed and the number fuzzy variables associated with each parameter. If possible, use at least one variable and its time derivative. Although it is possible to use a single, instantaneous error parameter without knowing its rate of change, this cripples the system's ability to minimize overshoot for a step inputs.

4) Create FL membership functions that define the meaning (values) of Input/Output terms used in the rules.

5) Create the necessary pre- and post-processing FL routines if implementing in S/W, otherwise program the rules into the FL H/W engine.

6) Test the system, evaluate the results, tune the rules and membership functions, and retest until satisfactory results are obtained.

FUZZY SETS
Lotfi Zadeh proposed the set membership idea to make suitable decisions when uncertainty occurs. Consider the “short” example discussed previously. If we take “short” as a height equal to or less than 4 feet, then 3’90’’ would easily become the member of the set “short” and 4’25’’ will not be a member of the set “short.” The membership value is “1” if it belongs to the set or “0” if it is not a member of the set. Thus membership in a set is found to be binary i.e., the element is a member of a set or not.

It can be indicated as,

[image: image1.emf]
[image: image2.emf]
Fuzzy logic is best understood in the context of set membership. Suppose you are assembling a set of rainy days. Would you put today in the set? When you deal only with crisp statements that are either true or false, your inclusion of today in the set of rainy days is based on certainty. When dealing with fuzzy logic, you would include today in the set of rainy days via an ordered pair, such as (today, 0.8). The first member in such an ordered pair is a candidate for inclusion in the set, and the second member is a value between 0 and 1, inclusive, called the degree of membership in the set. The inclusion of the degree of membership in the set makes it convenient for developers to come up with a set theory based on fuzzy logic, just as regular set theory is developed. Fuzzy sets are sets in which members are presented as ordered pairs that include information on degree of membership. A traditional set of, say, k elements, is a special case of a fuzzy set, where each of those k elements has 1 for the degree of membership, and every other element in the universal set has a degree of membership 0, for which reason you don’t bother to list it.

We can say that the degree of membership of any particular element of a fuzzy set express the degree of compatibility of the element with a concept represented by fuzzy set. It means that a fuzzy set A contains an object x to degree a(x), i.e., a(x) = Degree(x ∈ A), and the map a : X → {Membership Degrees} is called a set function or membership function. The fuzzy set A can be expressed as A = {(x, a(x))}, x ∈ X, and it imposes an elastic constrain of the possible values of elements x ∈ X called the possibility distribution. Fuzzy sets tend to capture vagueness exclusively via membership functions that are mappings from a given universe of discourse X to a unit interval containing membership values. It is important to note that membership can take values between 0 and 1.

Fuzziness describes the ambiguity of an event and randomness describes the uncertainty in the occurrence of an event. It can be generally seen in classical sets that there is no uncertainty, hence they have crisp boundaries, but in the case of a fuzzy set, since uncertainty occurs, the boundaries may be ambiguously specified.
Fuzzy sets form the building blocks for fuzzy IF–THEN rules which have the general form “IF X is A THEN Y is B,” where A and B are fuzzy sets. The term “fuzzy systems” refers mostly to systems that are governed by fuzzy IF–THEN rules. The IF part of an implication is called the antecedent whereas the second, THEN part is a consequent. A fuzzy system is a set of fuzzy rules that converts inputs to outputs. The basic configuration of a pure fuzzy system is shown in Fig. The fuzzy inference engine (algorithm) combines fuzzy IF–THEN rules into a mapping from fuzzy sets in the input space X to fuzzy sets in the output space Y based on fuzzy logic principles. From a knowledge representation viewpoint, a fuzzy IF–THEN rule is a scheme for capturing knowledge that involves imprecision. The main feature of reasoning using these rules is its partial matching capability, which enables an inference to be made from a fuzzy rule even when the rule’s condition is only partially satisfied

[image: image3.emf]
Fuzzy systems, on one hand, are rule-based systems that are constructed from a collection of linguistic rules; on the other hand, fuzzy systems are nonlinear mappings of inputs (stimuli) to outputs (responses), i.e., certain types of fuzzy systems can be written as compact nonlinear formulas. The inputs and outputs can be numbers or vectors of numbers. These rule-based systems in theory model represents any system with arbitrary accuracy, i.e., they work as universal approximators.
FUZZY SET OPERATIONS
The usual operations you can perform on ordinary sets are union, in which you take all the elements that are in one set or the other; and intersection, in which you take the elements that are in both sets. In the case of fuzzy sets, taking a union is finding the degree of membership that an element should have in the new fuzzy set, which is the union of two fuzzy sets.

If a, b, c, and d are such that their degrees of membership in the fuzzy set A are 0.9, 0.4, 0.5, and 0, respectively, then the fuzzy set A is given by the fit vector (0.9, 0.4, 0.5, 0). The components of this fit vector are called fit values of a, b, c, and d.

UNION OF FUZZY SETS
Consider a union of two traditional sets and an element that belongs to only one of those sets. Earlier you saw that if you treat these sets as fuzzy sets, this element has a degree of membership of 1 in one case and 0 in the other since it belongs to one set and not the other. Yet you are going to put this element in the union. The criterion you use in this action has to do with degrees of membership. You need to look at the two degrees of membership, namely, 0 and 1, and pick the higher value of the two, namely, 1. In other words, what you want for the degree of membership of an element when listed in the union of two fuzzy sets, is the maximum value of its degrees of membership within the two fuzzy sets forming a union.

If a, b, c, and d have the respective degrees of membership in fuzzy sets A, B as A = (0.9, 0.4, 0.5, 0) and B = (0.7, 0.6, 0.3, 0.8), then A [cup] B = (0.9, 0.6, 0.5, 0.8).

INTERSECTION AND COMPLEMENT OF TWO FUZZY SETS
Analogously, the degree of membership of an element in the intersection of two fuzzy sets is the minimum, or the smaller value of its degree of membership individually in the two sets forming the intersection. For example, if today has 0.8 for degree of membership in the set of rainy days and 0.5 for degree of membership in the set of days of work completion, then today belongs to the set of rainy days on which work is completed to a degree of 0.5, the smaller of 0.5 and 0.8.

Recall the fuzzy sets A and B in the previous example. A = (0.9, 0.4, 0.5, 0) and B = (0.7, 0.6, 0.3, 0.8). A[cap]B, which is the intersection of the fuzzy sets A and B, is obtained by taking, in each component, the smaller of the values found in that component in A and in B. Thus A[cap]B = (0.7, 0.4, 0.3, 0).

The idea of a universal set is implicit in dealing with traditional sets. For example, if you talk of the set of married persons, the universal set is the set of all persons. Every other set you consider in that context is a subset of the universal set. We bring up this matter of universal set because when you make the complement of a traditional set A, you need to put in every element in the universal set that is not in A. The complement of a fuzzy set, however, is obtained as follows. In the case of fuzzy sets, if the degree of membership is 0.8 for a member, then that member is not in that set to a degree of 1.0 – 0.8 = 0.2. So you can set the degree of membership in the complement fuzzy set to the complement with respect to 1. If we return to the scenario of having a degree of 0.8 in the set of rainy days, then today has to have 0.2 membership degree in the set of non-rainy or clear days.

Continuing with our example of fuzzy sets A and B, and denoting the complement of A by A’, we have A’ = (0.1, 0.6, 0.5, 1) and B’ = (0.3, 0.4, 0.7, 0.2). Note that A’ [cup] B’ = (0.3, 0.6, 0.7, 1), which is also the complement of A [cap] B. You can similarly verify that the complement of A [cup] B is the same as A’ [cap] B’. Furthermore, A [cup] A’ = (0.9, 0.6, 0.5, 1) and A [cap] A’ = (0.1, 0.4, 0.5, 0), which is not a vector of zeros only, as would be the case in conventional sets. In fact, A and A’ will be equal in the sense that their fit vectors are the same, if each component in the fit vector is equal to 0.5.

Applications of Fuzzy Logic
Applications of fuzzy sets and fuzzy logic are found in many fields, including artificial intelligence, engineering, computer science, operations research, robotics, and pattern recognition. These fields are also ripe for applications for neural networks. So it seems natural that fuzziness should be introduced in neural networks themselves. Any area where humans need to indulge in making decisions, fuzzy sets can find a place, since information on which decisions are to be based may not always be complete and the reliability of the supposed values of the underlying parameters is not always certain.

Examples of Fuzzy Logic
Let us say five tasks have to be performed in a given period of time, and each task requires one person dedicated to it. Suppose there are six people capable of doing these tasks. As you have more than enough people, there is no problem in scheduling this work and getting it done. Of course who gets assigned to which task depends on some criterion, such as total time for completion, on which some optimization can be done. But suppose these six people are not necessarily available during the particular period of time in question. Suddenly, the equation is seen in less than crisp terms. The availability of the people is fuzzy-valued. Here is an example of an assignment problem where fuzzy sets can be used.

COMMERCIAL APPLICATIONS
Many commercial uses of fuzzy logic exist today. A few examples are listed here:

• A subway in Sendai, Japan uses a fuzzy controller to control a subway car. This controller has outperformed human and conventional controllers in giving a smooth ride to passengers in all terrain and external conditions.

• Cameras and camcorders use fuzzy logic to adjust autofocus mechanisms and to cancel the jitter caused by a shaking hand.

• Some automobiles use fuzzy logic for different control applications. Nissan has patents on fuzzy logic braking systems, transmission controls, and fuel injectors. GM uses a fuzzy transmission system in its Saturn vehicles.

• FuziWare has developed and patented a fuzzy spreadsheet called FuziCalc that allows users to incorporate fuzziness in their data.

• Software applications to search and match images for certain pixel regions of interest have been developed. Avian Systems has a software package called FullPixelSearch.

• A stock market charting and research tool called SuperCharts from Omega Research, uses fuzzy logic in one of its modules to determine whether the market is bullish, bearish, or neutral.

Standard fuzzy set operations
Standard complement

cA(x) = 1 − A(x)

Standard intersection

(A ∩ B)(x) = min [A(x), B(x)]

Standard union

(A ∪ B)(x) = max [A(x), B(x)]

LINGUISTIC VARIABLES

In 1973, Professor Lotfi Zadeh proposed the concept of linguistic or "fuzzy" variables. Think of them as linguistic objects or words, rather than numbers. The sensor input is a noun, e.g. "temperature", "displacement", "velocity", "flow", "pressure", etc. Since error is just the difference, it can be thought of the same way. The fuzzy variables themselves are adjectives that modify the variable (e.g. "large positive" error, "small positive" error ,"zero" error, "small negative" error, and "large negative" error). As a minimum, one could simply have "positive", "zero", and "negative" variables for each of the parameters. Additional ranges such as "very large" and "very small" could also be added to extend the responsiveness to exceptional or very nonlinear conditions, but aren't necessary in a basic system.

THE RULE MATRIX

In the last article the concept of linguistic variables was presented. The fuzzy parameters of error (command-feedback) and error-dot (rate-of-change-of-error) were modified by the adjectives "negative", "zero", and "positive". To picture this, imagine the simplest practical implementation, a 3-by-3 matrix. The columns represent "negative error", "zero error", and "positive error" inputs from left to right. The rows represent "negative", "zero", and "positive" "error-dot" input from top to bottom. This planar construct is called a rule matrix. It has two input conditions, "error" and "error-dot", and one output response conclusion (at the intersection of each row and column). In this case there are nine possible logical product (AND) output response conclusions.

Although not absolutely necessary, rule matrices usually have an odd number of rows and columns to accommodate a "zero" center row and column region. This may not be needed as long as the functions on either side of the center overlap somewhat and continuous dithering of the output is acceptable since the "zero" regions correspond to "no change" output responses the lack of this region will cause the system to continually hunt for "zero". It is also possible to have a different number of rows than columns. This occurs when numerous degrees of inputs are needed. The maximum number of possible rules is simply the product of the number of rows and columns, but definition of all of these rules may not be necessary since some input conditions may never occur in practical operation. The primary objective of this construct is to map out the universe of possible inputs while keeping the system sufficiently under control.

STARTING THE PROCESS

The first step in implementing FL is to decide exactly what is to be controlled and how. For example, suppose we want to design a simple proportional temperature controller with an electric heating element and a variable-speed cooling fan. A positive signal output calls for 0-100 percent heat while a negative signal output calls for 0-100 percent cooling. Control is achieved through proper balance and control of these two active devices.

[image: image4.png]SIMPLE FL CONTROL SYSTEM

Feater |
T comots
? Cookr [

Temmo
Envtonment Temp
[r—
o Festback Senso! incontolledsrwircnment
Error: Crmd-Temp (+=too cold, - = too hot)

Ertor:dot Time derivative or Err (+ = gefling hotter,
Oufput HEAT or NO CHANGE or COOL.

etting cooler)

Figure 1 - A simple block diagram of the control system.

It is necessary to establish a meaningful system for representing the linguistic variables in the matrix. For this example, the following will be used:

"N" = "negative" error or error-dot input level

"Z" = "zero" error or error-dot input level

"P" = "positive" error or error-dot input level

"H" = "Heat" output response

"-" = "No Change" to current output

"C" = "Cool" output response

Define the minimum number of possible input product combinations and corresponding output response conclusions using these terms. For a three-by-three matrix with heating and cooling output responses, all nine rules will need to be defined. The conclusions to the rules with the linguistic variables associated with the output response for each rule are transferred to the matrix.

WHAT IS BEING CONTROLLED AND HOW:

Figure 2 - Typical control system response

Figure 2 shows what command and error look like in a typical control system relative to the command setpoint as the system hunts for stability. Definitions are also shown for this example.

DEFINITIONS:

INPUT#1: ("Error", positive (P), zero (Z), negative (N))

INPUT#2: ("Error-dot", positive (P), zero (Z), negative (N))

CONCLUSION: ("Output", Heat (H), No Change (-), Cool (C))

INPUT#1 System Status

Error = Command-Feedback

P=Too cold, Z=Just right, N=Too hot

INPUT#2 System Status

Error-dot = d(Error)/dt

P=Getting hotter Z=Not changing N=Getting colder

OUTPUT Conclusion & System Response

Output H = Call for heating - = Don't change anything C = Call for cooling

SYSTEM OPERATING RULES

Linguistic rules describing the control system consist of two parts; an antecedent block (between the IF and THEN) and a consequent block (following THEN). Depending on the system, it may not be necessary to evaluate every possible input combination (for 5-by-5 & up matrices) since some may rarely or never occur. By making this type of evaluation, usually done by an experienced operator, fewer rules can be evaluated, thus simplifying the processing logic and perhaps even improving the FL system performance.

[image: image6.png]RULE STRUCTURE & RULE MATRIX

Corsequert
I Antecedent Block | —slock

IF Cmd-Ternp=N AND d(Cmd-Temp)idi=N THEN Output=C
IF Gmd-Terp=Z AND d(Cmd-Temp)idi=N THEN Outpui=H
IF Cmd-Ternp=P AND d(Cmd-Temp)idi=N THEN Output=H

IF Gmd-Ternp=N AND d(Cme-Temp)ic=2 THEN Outpui=C
IF Cmd-Ternp=Z AND d(Cmd-Terp)idi=Z THEN Qutput=NC
IF Gmd-Termp=P AND d(Crr-Temp)idi=2 THEN Output=H

IF Gmd-Ternp=N AND d(Cmd- Termp)idi=F THEN Output=C

IF Cmd-Ternp=Z AND d(Crd-Temp)idi=P THEN Output=C

IF Gmd-Temp=P AND &(Crnd-Temp)idi=P THEN Output=F

Error-dot - (demd-Temp)id

N z P
1 2 3

N c H H
T 5 5

z c NC H
7 g g

P c c H

Ertor -(Crmd-Temp)

Figures 3 & 4 - The rule structure.

After transferring the conclusions from the nine rules to the matrix there is a noticeable symmetry to the matrix. This suggests (but doesn't guarantee) a reasonably well-behaved (linear) system. This implementation may prove to be too simplistic for some control problems, however it does illustrate the process. Additional degrees of error and error-dot may be included if the desired system response calls for this. This will increase the rulebase size and complexity but may also increase the quality of the control. Figure 4 shows the rule matrix derived from the previous rules.

MEMBERSHIP FUNCTIONS

In the last article, the rule matrix was introduced and used. The next logical question is how to apply the rules. This leads into the next concept, the membership function.

The membership function is a graphical representation of the magnitude of participation of each input. It associates a weighting with each of the inputs that are processed, define functional overlap between inputs, and ultimately determines an output response. The rules use the input membership values as weighting factors to determine their influence on the fuzzy output sets of the final output conclusion. Once the functions are inferred, scaled, and combined, they are defuzzified into a crisp output which drives the system. There are different membership functions associated with each input and output response. Some features to note are:

SHAPE - triangular is common, but bell, trapezoidal, haversine and, exponential have been used. More complex functions are possible but require greater computing overhead to implement.. HEIGHT or magnitude (usually normalized to 1) WIDTH (of the base of function), SHOULDERING (locks height at maximum if an outer function. Shouldered functions evaluate as 1.0 past their center) CENTER points (center of the member function shape) OVERLAP (N&Z, Z&P, typically about 50% of width but can be less).

[image: image7.png]mbershin

0-1)

Degreeof
(Typic:

| a——Hein—»]

MEMBERSHIP FUNCTIONS

Shoudered

a

N

Centrs
- ~
-

A

\

Pasitive

PR F—

EngheeringUrits
(Typically Ibs, deg F, of degim, fisec, etc)

Figure 5 - The features of a membership function

Figure 5 illustrates the features of the triangular membership function which is used in this example because of its mathematical simplicity. Other shapes can be used but the triangular shape lends itself to this illustration.

The degree of membership (DOM) is determined by plugging the selected input parameter (error or error-dot) into the horizontal axis and projecting vertically to the upper boundary of the membership function(s).

[image: image8.png]Degreeof Memberehip

EXAMPLE ERROR MEMBERSHIP FUNCTION

o

a

&

/

egatve Posiive

E] []
Errorindsgrees F

(Could belbs, deg C, indhes, etc)

2

EXAMPLE ERROR-DOT MEMBERSHIP FUNCTION

Degreeof Memberehip

o

a

&

-0

A

/
/Negatve
e s 5 o

Ertor-dot in degrees Fiin
(Could be fiser, Ibsimin, stc)

Figure 6 - A sample case

In Figure 6, consider an "error" of -1.0 and an "error-dot" of +2.5. These particular input conditions indicate that the feedback has exceeded the command and is still increasing.

ERROR & ERROR-DOT FUNCTION MEMBERSHIP

The degree of membership for an "error" of -1.0 projects up to the middle of the overlapping part of the "negative" and "zero" function so the result is "negative" membership = 0.5 and "zero" membership = 0.5. Only rules associated with "negative" & "zero" error will actually apply to the output response. This selects only the left and middle columns of the rule matrix.

For an "error-dot" of +2.5, a "zero" and "positive" membership of 0.5 is indicated. This selects the middle and bottom rows of the rule matrix. By overlaying the two regions of the rule matrix, it can be seen that only the rules in the 2-by-2 square in the lower left corner (rules 4,5,7,8) of the rules matrix will generate non-zero output conclusions. The others have a zero weighting due to the logical AND in the rules.
Few Examples
	Example 1: Classifying Houses

Problem. A realtor wants to classify the houses he offers to his clients. One indicator of comfort of these houses is the number of bedrooms in them. Let the available types of houses be represented by the following set.

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

The houses in this set are described by u number of bedrooms in a house. The realtor wants to describe a "comfortable house for a 4-person family," using a fuzzy set.

Solution. The fuzzy set "comfortable type of house for a 4-person family" may be described using a fuzzy set in the following manner.

[image: image9.png]HouseForFour =
FuzzySet[{{1, .2}, {2, .5}, (3, .8}, {4, 1),
(5, .7}, {6, .3}}, UniversalSpace - {1, 10}1;

[image: image10.png]FuzzyPlot [HouseForFour, ShowDots — True];

[image: image11.png]

	

	[image: image12.png]

	Example 2: Representing Age

Problem 2-1. Fuzzy sets can be used to represent fuzzy concepts. Let U be a reasonable age interval of human beings.

U = {0, 1, 2, 3, ... , 100}

Solution 2-1. This interval can be interpreted with fuzzy sets by setting the universal space for age to range from 0 to 100.

[image: image13.png]SetOptions[FuzzySet, UniversalSpace — {0, 100}];

Problem 2-2. Assume that the concept of "young" is represented by a fuzzy set Young, whose membership function is given by the following fuzzy set.

[image: image14.png]Young = FuzzyTrapezoid[0, 0, 25, 40];

The concept of "old" can also be represented by a fuzzy set, Old, whose membership function could be defined in the following way.

[image: image15.png]01d = FuzzyTrapezoid[50, 65, 100, 100];

We define the concept of middle-aged to be neither young nor old. We do this by using fuzzy operators from Fuzzy Logic.

Solution 2-2. We can find a fuzzy set to represent the concept of middle-aged by taking the intersection of the complements of our Young and Old fuzzy sets.

[image: image16.png]MiddleRged - Intersection[Complenent [Young],
Complement [01d]]1;

We can now see a graphical interpretation of our age descriptors by using the FuzzyPlotcommand.

[image: image17.png]FuzzyPlot [Young, Middleged, 01d,
PlotJoined - Truel:

[image: image18.png]

From the graph, you can see that the intersection of "not young" and "not old" gives a reasonable definition for the concept of "middle-aged."

	[image: image19.png]

Example 3: Choosing a Job

Problem. Fuzzy sets can be used to aid in decision making or management. We illustrate this with an example from Klir and Folger [Klir and Folger, 1988]. Given four jobs (Jobs 1, 2, 3, and 4), our task is to choose the job that will give us the highest salary, given the constraints that the job should be interesting and close to our home.

Solution. The first constraint of job interest can be represented with the following fuzzy set.

[image: image20.png]Interest -
FuzzySet[{{1, .4}, {2, .6}, {3, .8}, {4, .6}),
UniversalSpace - {1, 4}]

[image: image21.png]FuzzySet[{{l, 0.4}, {2, 0.6}, {3, 0.8}, {4, 0.6}},
UniversalSpace - {1, 4, 1}]

We can see that Job 3 has the highest membership grade, meaning that Job 3 is the most interesting of the four jobs. Job 1 on the other hand is the least interesting, since it has a membership grade of only 0.4.

We can form a fuzzy set for our second constraint in a similar manner. Here is a fuzzy set used to represent the driving distance to the four jobs.

[image: image22.png]Drive =
FuzzySet[{{1, .1}, {2, .9}, (3, .7}, {4, 1)},
UniversalSpace - {1, 4}]

[image: image23.png]FuzzySet[{{1, 0.1}, {2, 0.9}, {3, 0.7}, {4, 1}},
UniversalSpace - {1, 4, 1}]

In the fuzzy set above, the membership grades indicate the length of the drive to work. A high membership grade indicates that it is a short drive to work--a good thing. A small membership grade indicates an undesirable, long drive to work. From the fuzzy set above, we can see that Job 4 is located near our home, while Job 1 is a long way from our home.

Finally, we need to figure in the goal of a good salary. There is no real difference between a constraint and a goal in this problem, so we figure in the worth of the salary the same way we did for the previous constraints. We could use a formula to convert a salary into a membership grade for each job [Klir & Folger, 1988], but to stay with the tradition of our previous constraints, we arbitrarily assign a membership grade to each job based on salary.

[image: image24.png]Salary =
FuzzySet[{{1, .875}, {2, .7}, (3, .5}, {4, .2}),
UniversalSpace - {1, 4}]

[image: image25.png]FuzzySet|
41, 0.875), (2, 0.7}, {3, 0.5}, (4, 0.2}},
UniversalSpace - {1, 4, 1}]

From this fuzzy set, we see that Job 1 pays the highest salary, and Job 4 pays the lowest. Now that all of our criteria is represented as fuzzy sets, we need to decide on a function to make the decision. We will use the standard Intersection to make the fuzzy decision. Applying the Intersection operation can be thought of as adding the constraints and goals to come up with the best overall decision.

[image: image26.png]Intersection[Interest, Drive, Salary]

[image: image27.png]FuzzySet[{{1, 0.1}, {2, 0.6}, {3, 0.5}, {4, 0.2}},
UniversalSpace - {1, 4, 1}]

We can plot the decision fuzzy set to see the results graphically.

[image: image28.png]FuzzyPlot [Decision];

[image: image29.png]

At last, we can look for the maximum membership grade to decide which job best satisfies our goals and constraints. In this example, we see that Job 2 appears to be the best job for us.

There are a number of different ways that the decision in this example could have been made. For example, we could have used a different operator, maybe a product operator, to make our decision; we could have weighted different constraints more heavily than others; or we could have used different functions to arrive at the membership grades. As an exercise, try using a different method and see which job your method selects as the best.

[image: image30.png]

	Q:
	What is a fuzzy set?

	
	A fuzzy set is a set that is defined by a membership function. A membership function assigns to each element in the set under consideration (the universal space) a membership grade, which is a value in the interval [0, 1]. In classical sets, objects either belong to a set or do not belong to a set; there is no other choice. By defining a set using a membership function, it is possible for an element to belong partially to a set. For example, if a door is slightly ajar, one might say that the door is open, with a membership grade of 0.2 to indicate that the door is slightly open. We might also say that the door is closed, with a membership grade of 0.8. By using a fuzzy set, we are able to indicate that the door is partially open or partially closed. Using classical logic, we would not be able to do this; the door would be considered either open or closed with no in-between.

	
	

	Q:
	What is fuzzy logic?

	
	Fuzzy logic is an extension of classical logic and uses fuzzy sets rather than classical sets. There are a few different explanations of what fuzzy logic is, so rather than add our own explanation, we will quote one explanation put forth by Lotfi A. Zadeh, the father of fuzzy logic. Zadeh says, "In its narrow sense, fuzzy logic is a logic of approximate reasoning which may be viewed as a generalization and extension of multivalued logic. But in a broader and much more significant sense, fuzzy logic is coextensive with the theory of fuzzy sets, that is, classes of objects in which the transition from membership to nonmembership is gradual rather than abrupt. In its wider sense, fuzzy logic has many branches ranging from fuzzy arithmetic and fuzzy automata to fuzzy pattern recognition, fuzzy languages, and fuzzy expert systems."

	
	

	Q:
	What are some applications of fuzzy logic?

	
	The use of fuzzy logic for creating decision-support and expert systems has grown in popularity among management and financial decision-modeling experts. Still others are putting it to work in pattern recognition, economics, data analysis, and other areas that involve a high level of uncertainty, complexity, or nonlinearity. There are presently numerous applications that incorporate fuzzy logic control. Some of the more prominent applications are electronically stabilized camcorders, autofocus cameras, washing machines, air conditioners, automobile transmissions, subway trains, and cement kilns.

	
	

	Q:
	How is it that fuzzy systems have been successfully applied to such a wide variety of applications?

	
	Fuzzy "if-then" rules are often employed to capture the imprecise modes of reasoning that play an essential role in the human ability to make decisions in uncertain and imprecise environments. These fuzzy "if-then" rules are used extensively in both fuzzy modeling and control.

	
	

	Q:
	What were your reasons for developing Fuzzy Logic?

	
	Most fuzzy logic software packages available today are application oriented. Consequently, they provide limited support for understanding the underlying concepts of fuzzy logic. As fuzzy logic usage increases, so does the number of people who wish to learn its underlying concepts. To help with this learning, we developed Fuzzy Logic, a software package that is easy to use and contains a wide assortment of fuzzy operations and graphing capabilities. This package allows users to really learn and understand the concepts of fuzzy logic before they start to apply them.

	
	

	Q:
	Is it difficult to learn fuzzy set theory?

	
	Fuzzy set theory is somewhat difficult to learn from scratch without the proper tools. The theory is much easier to understand and learn with the help of a good visualization tool such as Fuzzy Logic. Among other things, Fuzzy Logic comes with interactive notebooks that demonstrate the different functions used in fuzzy set theory. A notebook containing an introduction to fuzzy set theory is also included. This notebook uses the Fuzzy Logic functions to demonstrate the theory.

	
	

	Q:
	Is it difficult to learn how to use Fuzzy Logic?

	
	No, it isn't. Loading Fuzzy Logic is straightforward, and Fuzzy Logic contains a collection of interactive notebooks (also provided in hard copy) that provide a comprehensive introduction to each of the functions in the package. In addition, Fuzzy Logic comes with a collection of notebooks that provide detailed discussions about more advanced topics such as fuzzy set theory, fuzzy modeling, fuzzy logic control, and fuzzy arithmetic. These notebooks contain step-by-step explanations of the topics, using Fuzzy Logic functions to demonstrate the ideas. It's possible to use these notebooks as templates for your own systems.

	
	

	
	

	
	

	
	

	Q:
	How are fuzzy sets defined in Fuzzy Logic?

	
	In Fuzzy Logic, fuzzy sets are defined on a discrete universal space. Fuzzy sets are characterized by pairs, {{x1, u1}, {x2, u2}, ..., {xn, un}}, which consist of the elements of the fuzzy set, x1, x2, ..., xn, and the membership grades of the elements, u1, u2, ..., un(membership grades are from the range [0, 1]). The discrete universal space allows for quick calculations and provides unique visualization opportunities.

	
	

	Q:
	How are fuzzy sets created in Fuzzy Logic?

	
	There are numerous ways to create fuzzy sets in Fuzzy Logic. The package provides functions for creating fuzzy sets using some common membership functions such as trapezoidal, triangular, or Gaussian. Also, fuzzy sets can be created with user-defined functions, provided the functions return membership grades in the range [0, 1]. Also, there is a function for creating a collection of fuzzy sets that are evenly distributed over the universal space. If you don't want to use a function at all, you can also create a fuzzy set manually by defining the individual elements and membership grades.

[image: image31.png]Sample Membership Functions

Trapeacital Fuzy Set

Gevssien Fuzay Set

'
0s
o
o
| v |
L bl L
T35 79 i Teso 1risa
Trianier Fuzay Set User-Desined Fuzzy set
'
0s
o
o
o
1 I o I| It
T35 79 i 1357 s s

	
	

	Q:
	How can fuzzy sets be viewed in Fuzzy Logic?

	
	Fuzzy Logic provides a number of functions for viewing fuzzy sets. Fuzzy sets can be plotted in a discrete form or in a continuous representation, and any number of fuzzy sets can be plotted together. In addition, there are plotting options that allow for a visualization of defuzzifications.

[image: image32.png]Vanous Fuzzy Plotting Options

Dizorete Fuzay Plot

T3s791amien

Desuzzifiostion Plot

Contammons Fuzay Plot

13875 naisen

Hultiple Fusay Plots

o
1387 91 men

1357531171921

	
	

	Q:
	What types of operations can be performed on or with fuzzy sets?

	
	A wide array of operations can be performed using fuzzy sets. Some of the operations that can be performed with the Fuzzy Logic package are normalizations, concentrations, dilations, aggregation operations (see next question), defuzzifications, inferencing operations, complements, arithmetic, level sets, and many fuzzy set modifiers.

	
	

	Q:
	What are aggregation operations and the aggregation operations supported byFuzzy Logic?

	
	Aggregation operations are operations that combine or aggregate two or more fuzzy sets. There are a number of different types of aggregation, including unions (sums), intersections (products), and means. Fuzzy Logic contains a wide collection of different operators, including many nonstandard operators that are not found in many other fuzzy packages. In addition,Fuzzy Logic provides a function for creating user-defined aggregators, making it easy for users to experiment with aggregators or add their own aggregators. The following are among the aggregators that can be used in Fuzzy Logic.

· For unions and intersections: min, max, Hamacher, Frank, Yager, Dubois-Prade, Dombi, Yu, and Weber

· For sums and products: drastic, bounded, algebraic, Einstein, and Hamacher

· For means: arithmetic, geometric, harmonic, and generalized

	
	

	Q:
	What is defuzzification?

	
	Defuzzification is a process that converts a fuzzy set or fuzzy number into a crisp value or number. Defuzzification is used in fuzzy modeling and in fuzzy logic control to convert the fuzzy outputs from the systems to crisp values. There are numerous techniques for defuzzifying a fuzzy set; some of the more popular techniques are included in Fuzzy Logic.

	
	

	Q:
	What are fuzzy relations, and does Fuzzy Logic support them?

	
	A fuzzy relation represents the degree of strength of the association or interaction between the elements of two or more sets. Fuzzy Logic contains a wide array of functions for creating and operating on or with fuzzy relations. In fact, most of the functions that work with fuzzy sets also work with fuzzy relations.

	
	

	Q:
	Can fuzzy relations be graphed like fuzzy sets?

	
	Yes, they can. Fuzzy Logic contains plotting functions for producing different types of three-dimensional plots of fuzzy relations. There are discrete, surface, and wire frame-type plots. In addition, fuzzy relations can be viewed as membership matrices, which are also supported byFuzzy Logic.

	
	

	Q:
	Can I do fuzzy logic control with Fuzzy Logic?

	
	Yes, you can. Fuzzy Logic contains all of the tools necessary to design a fuzzy logic controller. Using some of the Fuzzy Logic and Mathematica functions, you can also perform simulations with your fuzzy controller. The package contains a notebook that gives a thorough description of how to perform these simulations.

	
	

